Der Spin-Hall-Effekt ist ein quantenmechanischer Effekt, der in Analogie zum klassischen Hall-Effekt zu sehen ist, aber nicht in Unterschieden der Verteilung elektrischer Ladung quer zur Richtung des elektrischen Stroms führt, sondern zu Unterschieden in der Verteilung der Spin-Ausrichtung der Elektronen.
Wenn ein elektrischer Strom durch einen Festkörper fließt, werden die Elektronen je nach Orientierung ihres Spins (quantenmechanischer Eigendrehimpuls) senkrecht zur Stromrichtung abgelenkt. Es fließt ein Spin-Strom quer zur elektrischen Stromrichtung, so dass an gegenüberstehenden Seiten die Spins entgegengesetzt polarisiert sind. Mit dem Spinstrom selbst ist keine elektrische Spannung wie beim gewöhnlichen Hall-Effekt verbunden. Der Spin-Strom ist proportional zum elektrischen Feld , das die Elektronenbewegung treibt: . Dabei bezeichnet die Spin-Hall-Leitfähigkeit.
Im Gegensatz zum klassischen Hall-Effekt ist kein externes Magnetfeld erforderlich. Der Effekt beruht auf spinabhängiger Streuung der Elektronen (sog. Mott-Streuung) an Defekten der Probe (extrinsischer Spin-Hall-Effekt). Es gibt aber noch einen zweiten Mechanismus. In Spin-Bahn-gekoppelten Systemen tritt der Spin-Hall-Effekt auch in idealen Systemen auf, die keine Defekte aufweisen (intrinsischer Spin-Hall-Effekt), wie 2003 von zwei Gruppen unabhängig vorhergesagt wurde[1] (Shoucheng Zhang und Kollegen für p-Typ Halbleiter[2] und unabhängig von Allan H. MacDonald, Jairo Sinova und Kollegen für n-Typ Halbleiter).[3]